Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract CDC WONDER is a web-based tool for the dissemination of epidemiologic data collected by the National Vital Statistics System. While CDC WONDER has built-in privacy protections, they do not satisfy formal privacy protections such as differential privacy and thus are susceptible to targeted attacks. Given the importance of making high-quality public health data publicly available while preserving the privacy of the underlying data subjects, we aim to improve the utility of a recently developed approach for generating Poisson-distributed, differentially private synthetic data by using publicly available information to truncate the range of the synthetic data. Specifically, we utilize county-level population information from the US Census Bureau and national death reports produced by the CDC to inform prior distributions on county-level death rates and infer reasonable ranges for Poisson-distributed, county-level death counts. In doing so, the requirements for satisfying differential privacy for a given privacy budget can be reduced by several orders of magnitude, thereby leading to substantial improvements in utility. To illustrate our proposed approach, we consider a dataset comprised of over 26,000 cancer-related deaths from the Commonwealth of Pennsylvania belonging to over 47,000 combinations of cause-of-death and demographic variables such as age, race, sex, and county-of-residence and demonstrate the proposed framework’s ability to preserve features such as geographic, urban/rural, and racial disparities present in the true data.more » « less
- 
            Abstract The dissemination of synthetic data can be an effective means of making information from sensitive data publicly available with a reduced risk of disclosure. While mechanisms exist for synthesizing data that satisfy formal privacy guarantees, these mechanisms do not typically resemble the models an end-user might use to analyse the data. More recently, the use of methods from the disease mapping literature has been proposed to generate spatially referenced synthetic data with high utility but without formal privacy guarantees. The objective for this paper is to help bridge the gap between the disease mapping and the differential privacy literatures. In particular, we generalize an approach for generating differentially private synthetic data currently used by the US Census Bureau to the case of Poisson-distributed count data in a way that accommodates heterogeneity in population sizes and allows for the infusion of prior information regarding the underlying event rates. Following a pair of small simulation studies, we illustrate the utility of the synthetic data produced by this approach using publicly available, county-level heart disease-related death counts. This study demonstrates the benefits of the proposed approach’s flexibility with respect to heterogeneity in population sizes and event rates while motivating further research to improve its utility.more » « less
- 
            null (Ed.)Abstract Background The 2010 Deepwater Horizon (DWH) oil spill involved thousands of workers and volunteers to mitigate the oil release and clean-up after the spill. Health concerns for these participants led to the initiation of a prospective epidemiological study (GuLF STUDY) to investigate potential adverse health outcomes associated with the oil spill response and clean-up (OSRC). Characterizing the chemical exposures of the OSRC workers was an essential component of the study. Workers on the four oil rig vessels mitigating the spill and located within a 1852 m (1 nautical mile) radius of the damaged wellhead [the Discoverer Enterprise (Enterprise), the Development Driller II (DDII), the Development Driller III (DDIII), and the Helix Q4000] had some of the greatest potential for chemical exposures. Objectives The aim of this paper is to characterize potential personal chemical exposures via the inhalation route for workers on those four rig vessels. Specifically, we presented our methodology and descriptive statistics of exposure estimates for total hydrocarbons (THCs), benzene, toluene, ethylbenzene, xylene, and n-hexane (BTEX-H) for various job groups to develop exposure groups for the GuLF STUDY cohort. Methods Using descriptive information associated with the measurements taken on various jobs on these rig vessels and with job titles from study participant responses to the study questionnaire, job groups [unique job/rig/time period (TP) combinations] were developed to describe groups of workers with the same or closely related job titles. A total of 500 job groups were considered for estimation using the available 8139 personal measurements. We used a univariate Bayesian model to analyze the THC measurements and a bivariate Bayesian regression framework to jointly model the measurements of THC and each of the BTEX-H chemicals separately, both models taking into account the many measurements that were below the analytic limit of detection. Results Highest THC exposures occurred in TP1a and TP1b, which was before the well was mechanically capped. The posterior medians of the arithmetic mean (AM) ranged from 0.11 ppm (‘Inside/Other’, TP1b, DDII; and ‘Driller’, TP3, DDII) to 14.67 ppm (‘Methanol Operations’, TP1b, Enterprise). There were statistical differences between the THC AMs by broad job groups, rigs, and time periods. The AMs for BTEX-H were generally about two to three orders of magnitude lower than the THC AMs, with benzene and ethylbenzene measurements being highly censored. Conclusions Our results add new insights to the limited literature on exposures associated with oil spill responses and support the current epidemiologic investigation of potential adverse health effects of the oil spill.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
